Skip to main content
Log in

Population Genetic and Structure Analyses of Annual Iranian Medicago orbicularis Indicates Advantageous Use of HTS-Generated SSR Markers

  • Research Paper
  • Published:
Iranian Journal of Science Aims and scope Submit manuscript

Abstract

Simple sequence repeat (SSR) markers are among more reliable markers widely used in population genetics and traditionally need intensive labor to develop. High-throughput sequencing (HTS) has enabled researches in screening whole DNA in order to develop dozens of reliable SSR markers to pave route for future studies. Annual medics (Medicago spp.) are specifically beneficial in agriculture, genetics, and pastureland management plans. In order to facilitate study of annual medics using SSRs and to test their effectiveness, HTS screening of whole DNA resulted in developing of hundreds of primer pairs published in this paper. Subsequent testing of candidate primers on Iranian M. orbicularis germplasm was narrowed down to six more variable primer pairs that generated 28 polymorphic bands with the allele size of 200–310 bp. Eleven populations were examined using our SSR markers. The average polymorphic information content was very high (> 0.90) for the primer combinations. Genetic diversity parameters were measured for all populations. A high level of polymorphism of 75% within populations was observed. We hypothesized that the self-pollinating reproductive system of M. orbicularis has led to the reduction of gene flow between populations and ultimately the low diversity among populations (24%). Different genotypes observed by structure analysis as well as regression and correlation analyses showed that genetical similarity was congruent with the geographical proximity. Our results suggest that our HTS-generated SSR markers can be used for the further study of other annual medics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are openly available from the corresponding author, IM, upon reasonable request.

References

  • Abbate L, Mercati F, Di Noto G, Heuertz M, Carimi F, Fatta Del Bosco S, Schicchi R (2020) Genetic distinctiveness highlights the conservation value of a Sicilian Manna Ash germplasm collection assigned to Fraxinus angustifolia (Oleaceae). Plants (basel) 9(8):1035. https://doi.org/10.3390/plants9081035

    Article  Google Scholar 

  • Albach DC, Greilhuber J (2004) Genome size variation and evolution in Veronica. Ann Bot (oxford) 94:897–911. https://doi.org/10.1093/aob/mch219

    Article  Google Scholar 

  • Altman A, Hasegawa PM (2012) Plant biotechnology and agriculture: prospects for the 21st century. Elsevier, Amsterdam and Boston, p 586

    Google Scholar 

  • Badri M, Ilahi H, Huguet T, Aouani ME (2007) Quantitative and molecular genetic variation in sympatric populations of Medicago laciniata and M. truncatula (Fabaceae): relationships with eco-geographical factors. Genet Res 89(2):107–122. https://doi.org/10.1017/S0016672307008725

    Article  Google Scholar 

  • Badri M, Zitoun A, Ilahi H, Huguet T, Aouani ME (2008a) Morphological and microsatellite diversity associated with ecological factors in natural populations of Medicago laciniata Mill. (Fabaceae). J Genet 87(3):241–255. https://doi.org/10.1007/s12041-008-0038-y

    Article  Google Scholar 

  • Badri M, Zitoun A, Soula S, Ilahi H, Huguet T, Aouani ME (2008b) Low levels of quantitative and molecular genetic differentiation among natural populations of Medicago ciliaris Kroch. (Fabaceae) of different Tunisian eco-geographical origin. Conserv Genet 9(6):1509–1520. https://doi.org/10.1007/s10592-007-9483-z

    Article  Google Scholar 

  • Bagheri Z, Assadi M, Small E, Mehregan I (2022) Cryptic Molecular-Geographical Divergence within Medicago minima revealed by SSR markers. Iran J Sci Technol Trans Sci 46(1):49–60. https://doi.org/10.1007/s40995-021-01236-8

    Article  Google Scholar 

  • Bayat M, Assadi M, Small E, Mehregan I (2021) Molecular studies of Iranian populations support the morphology-based taxonomic separation of Medicago rigidula and M. rigiduloides. Phytotaxa 518(4):281–299. https://doi.org/10.11646/phytotaxa.518.4.5

    Article  Google Scholar 

  • Béna G, Lyet A, Huguet T, Olivieri I (2005) Medicago-Sinorhizobium symbiotic specificity evolution and the geographic expansion of Medicago. J Evol Biol 18:1547–1558

    Article  Google Scholar 

  • Boissier E (1872) Medicago in Flora Oriental. 2: 90–105. Rep. 1975. By Asher, A, and Co B V, Amsterdam.

  • Botstein D, Whit RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32(3):314–331

    Google Scholar 

  • Conway MJ, Brandon NJ, Clem RL, Jones RM, Robertson BA, Willcocks JR (2001) Growth and persistence of 17 annual medic (Medicago spp.) accessions on clay soils in Central Queensland. Trop Grassl 35(4):226–234

    Google Scholar 

  • De Barba M, Miquel C, Lobréaux S, Quenette PY, Swenson JE, Taberlet P (2017) High-throughput microsatellite genotyping in ecology: improved accuracy, efficiency, standardization and success with low-quantity and degraded DNA. Mol Ecol Resour 17(3):492–507. https://doi.org/10.1111/1755-0998.12594

    Article  Google Scholar 

  • Derkaoui M, Caddel JL, Rommann LL (1993) Forage quality in annual Medicago spp. Agric Mediterr 123:86–91

    Google Scholar 

  • Djedid IK, Terzaghi M, Brundu G, Cicatell A, Laouar M, Guarino F, Castiglione S (2022) Genetic diversity and differentiation of eleven Medicago species from Campania region revealed by nuclear and chloroplast microsatellites markers. Genes 13:97. https://doi.org/10.3390/genes13010097

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Earl DA, VonHoldt BM (2012) Structure harvester: a website and program for visualizing structure output and implementing the Evanno method. Conserv Genet Resour 4:359–361. https://doi.org/10.1007/s12686-011-9548-7

    Article  Google Scholar 

  • Emami-Tabatabaei SS, Small E, Assadi M, Dehshiri MM, Mehregan I (2021) Genetic variation among Iranian Medicago polymorpha L. populations based on SSR markers. Genet Resour Crop Evol 68(4):1411–1424. https://doi.org/10.1007/s10722-020-01071-7

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620. https://doi.org/10.1111/j.1365-294x.2005.02553.x

    Article  Google Scholar 

  • Freeland JR (2020) Molecular ecology, 3rd edn. Wiley, Oxford, p 384

    Google Scholar 

  • Friedman J (2020) The evolution of annual and perennial plant life histories: ecological correlates and genetic mechanisms. Ann Rev Ecol Evol Syst 51:461–481. https://doi.org/10.1146/annurev-ecolsys-110218-024638

    Article  Google Scholar 

  • Germain-Aubrey CC, Nelson C, Soltis DE, Soltis PS, Gitzendanner MA (2016) Are microsatellite fragment lengths useful for population-level studies? the case of Polygala lewtonii (Polygalaceae). Appl Plant Sci 4(2):1500115. https://doi.org/10.3732/apps.1500115

    Article  Google Scholar 

  • Godwin ID, Aitken EAB, Smith LW (1997) Application of inter simple sequence repeat (ISSR) markers to plant genetics. Electrophoresis 18:1524–1528. https://doi.org/10.1002/elps.1150180906

    Article  Google Scholar 

  • Haddoudi L, Hdira S, Cheikh NB, Mahjoub A, Abdelly C, Ludidi N, Badri M (2021) Assessment of genetic diversity in Tunisian populations of Medicago polymorpha based on SSR markers. Chil J Agric Res 81(1):53–61. https://doi.org/10.4067/s0718-58392021000100053

    Article  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2012) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9. http://palaeo-electron.org/2001-1/past/issue1-01.htm

  • Hannachi AS, Boussaid M, Marrakchi M (1998) Genetic variability organization and gene flow in natural populations of Medicago polymorpha L. prospected in Tunisia. Genet Sel Evol 30:S121. https://doi.org/10.1186/1297-9686-30-S1-S121

    Article  Google Scholar 

  • Heyn CC (1963) The annual species of Medicago. Magnes Press, The Hebrew University, Jerusalem, p 154

    Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23(14):1801–1806. https://doi.org/10.1093/bioinformatics/btm233

    Article  Google Scholar 

  • Jiang H, Waseem M, Wang Y, Basharat S, Zhang X, Li Y, Liu P (2023) Development of simple sequence repeat markers for sugarcane from data mining of expressed sequence tags. Front Plant Sci 14:1199210. https://doi.org/10.3389/fpls.2023.1199210

    Article  Google Scholar 

  • Koressaar T, Lepamets M, Kaplinski L, Raime K, Andreson R, Remm M (2018) Primer3_masker: integrating masking of template sequence with primer design software. Bioinformatics 34(11):1937–1938. https://doi.org/10.1093/bioinformatics/bty036

    Article  Google Scholar 

  • Lepais O, Aissi A, Véla E, Beghami Y (2022) Joint analysis of microsatellites and flanking sequences enlightens complex demographic history of interspecific gene flow and vicariance in rear-edge oak populations. Heredity 129(3):169–182. https://doi.org/10.1038/s41437-022-00550-0

    Article  Google Scholar 

  • Liu ZP, Liu GS, Yang QC (2007) A novel statistical method for assessing SSR variation in autotetraploid alfalfa (Medicago sativa L.). Genet Mol Biol 30(2):385–391. https://doi.org/10.1590/S1415-47572007000300015

    Article  Google Scholar 

  • Magoc T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):2957–2963. https://doi.org/10.1093/bioinformatics/btr507

    Article  Google Scholar 

  • Marques AC, Ferraro-Peyret C, Michaud F, Song L, Smith E, Fabre G, Willig A, Wong MML, Xing X, Chong C, Brayer M, Fenouil T, Hervieu V, Bancel B, Devouassoux M, Balme B, Meyronet D, Menu P, Lopez J, Xu Z (2022) Improved NGS-based detection of microsatellite instability using tumor-only data. Front Oncol 12:969238. https://doi.org/10.3389/fonc.2022.969238

    Article  Google Scholar 

  • Mehregan I, Rahiminejad MR, Azizian D (2002) A taxonomic revision of the genus Medicago L. (Fabaceae) in Iran. Iran J Bot 9(2):207–221

    Google Scholar 

  • Morgante M, Olivieri AM (1993) PCR-amplified microsatellites as markers in plant genetics. Plant J 3(1):175–182

    Google Scholar 

  • Olivieri I, Gouyon PH, Prosperi JM (1991) Life cycles of some Mediterranean invasive plants. In: Groves RH, Castri FDI (eds) Biogeography of Mediterranean invasions. Cambridge University Press, Cambridge, pp 145–157

    Chapter  Google Scholar 

  • Parsa A (1948) Medicago in Flora de l'Iran. - Publication du Ministere de r Education, Museum l'Histoire Naturelle de Tehran, Tehran. 171–181

  • Peakall R, Smouse PE (2006) GENAIEx 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6(1):288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GENAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539. https://doi.org/10.1111/j.1471-8286.2005.01155.x

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959. https://doi.org/10.1093/genetics/155.2.945

    Article  Google Scholar 

  • Prosperi JM, Angevian M, Bonnin I, Chaulet E, Genier G, Jenczewski E, Olivieri I, Ronfort J (1996) Genetic diversity, preservation and use of genetic resources of Mediterranean legumes: alfa and medics (part of workshop: the genus Medicago in the Mediterranean region: current and prospects in research: 1995 October, Hammamet, Tunisie). Cah Options Mediterr 18:71–89

    Google Scholar 

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237

    Article  Google Scholar 

  • Ronfort J, Bataillon T, Santoni S, Delalande M, David JL, Prosperi JM (2006) Microsatellite diversity and broad scale geographic structure in a model legume: building a set of nested core collection for studying naturally occurring variation in Medicago truncatula. BMC Plant Biol 13:6–28. https://doi.org/10.1186/1471-2229-6-28

    Article  Google Scholar 

  • Šarhanová P, Pfanzelt S, Brandt R, Himmelbach A, Blattner FR (2018) SSR-seq: genotyping of microsatellites using next-generation sequencing reveals higher level of polymorphism as compared to traditional fragment size scoring. Ecol Evol 8(22):10817–10833. https://doi.org/10.1002/ece3.4533

    Article  Google Scholar 

  • Small E (1988) Pollen-ovule patterns in tribe Trifolieae (Leguminosae). Plant Syst Evol 160(3–4):195–205. https://doi.org/10.1007/BF00936047

    Article  Google Scholar 

  • Small E (2011) Alfalfa and relatives: evolution and classification of Medicago. NRC Research Press, Ottawa

    Book  Google Scholar 

  • Soltis PS, Soltis DE, Savolainen V, Crane PR, Barraclough TG (2002) Rate heterogeneity among lineages of tracheophytes: integration of molecular and fossil data and evidence for molecular living fossils. Proc Natl Acad Sci USA 99:4430–4435. https://doi.org/10.1073/pnas.032087199

    Article  Google Scholar 

  • Takezaki N, Nei M, Tamura K (2009) POPTREE2: software for constructing population trees from allele frequency data and computing other population statistics with Windows interface. Mol Biol Evol 27:747–752

    Article  Google Scholar 

  • Zalapa JE, Cuevas H, Zhu H, Steffan S, Senalik D, Zeldin E, McCown B, Harbut R, Simon P (2012) Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. Am J Bot 99(2):193–208. https://doi.org/10.3732/ajb.1100394

    Article  Google Scholar 

  • Zareei R, Small E, Assadi M, Mehregan I (2022) Genetic structure of Medicago sinskiae using microsatellite data reveals its fast expansion throughout western and southwestern Iran. Collect Bot 41:e2002. https://doi.org/10.3989/collectbot.2022.v41.002

    Article  Google Scholar 

  • Zhu Y, Sheaffer CC, Barnes DK (1996) Forage yield and quality of six annual Medicago species in the north-central USA. Agron J 88(6):955–960. https://doi.org/10.2134/agronj1996.00021962003600060019x

    Article  Google Scholar 

  • Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183

    Article  Google Scholar 

  • Zoghalami A, Hassen H, Seklani H, Robertson L, Ak S (1996) Distribution des luzernes annuelles en Tunisie centrale en fonction des facteurs edaphiques et climatiques. Fourrages (france) 145:5–16

    Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

IM and ES proposed the main idea. ZM in collaboration with IM performed the fieldworks and formal analysis. Software analysis were done by ZM. MA and MD identified the plant samples. ZM, ES and IM contributed in writing the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Iraj Mehregan.

Ethics declarations

Conflict of interest

The authors have not declared any conflict of interest.

Ethical Approval

Not applicable since this study did not involve human participants or material.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 143 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morshedi, Z., Assadi, M., Small, E. et al. Population Genetic and Structure Analyses of Annual Iranian Medicago orbicularis Indicates Advantageous Use of HTS-Generated SSR Markers. Iran J Sci 48, 331–342 (2024). https://doi.org/10.1007/s40995-024-01597-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-024-01597-w

Keywords

Navigation